Growth of diamond in liquid metal at 1 atm pressure (2024)

  • Haggerty, S. E. Diamond genesis in a multiply-constrained model. Nature 320, 34–38 (1986).

    Article ADS CAS Google Scholar

  • Pal’yanov, Y. N., Sokol, A. G., Borzdov, Y. M., Khokhryakov, A. F. & Sobolev, N. V. Diamond formation from mantle carbonate fluids. Nature 400, 417–418 (1999).

    Article ADS Google Scholar

  • Bundy, F. P. et al. The pressure-temperature phase and transformation diagram for carbon; updated through 1994. Carbon 34, 141–153 (1996).

    Article CAS Google Scholar

  • Bundy, F. P., Hall, H. T., Strong, H. M. & Wentorfjun, R. H. Man-made diamonds. Nature 176, 51–55 (1955).

    Article ADS CAS Google Scholar

  • Bovenkerk, H. P., Bundy, F. P., Hall, H. T., Strong, H. M. & Wentorf, R. H. Preparation of diamond. Nature 184, 1094–1098 (1959).

    Article ADS CAS Google Scholar

  • Hazen, R. M. & Hazen, R. M. The Diamond Makers (Cambridge Univ. Press, 1999).

  • D’Haenens-Johansson, U. F. S., Butler, J. E. & Katrusha, A. N. Synthesis of diamonds and their identification. Rev. Mineral. Geochem. 88, 689–753 (2022).

    Article Google Scholar

  • Doherty, M. W. et al. The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528, 1–45 (2013).

    Article ADS CAS Google Scholar

  • Ruf, M., Wan, N. H., Choi, H., Englund, D. & Hanson, R. Quantum networks based on color centers in diamond. J. Appl. Phys. 130, 070901 (2021).

    Article ADS CAS Google Scholar

  • Shikata, S. Single crystal diamond wafers for high power electronics. Diam. Relat. Mater. 65, 168–175 (2016).

    Article ADS CAS Google Scholar

  • Railkar, T. A. et al. A Critical Review of Chemical Vapor-Deposited (CVD) Diamond for Electronic Applications. Crit. Rev. Solid State Mater. Sci. 25, 163–277 (2000).

    Article ADS CAS Google Scholar

  • Butler, J. E., Mankelevich, Y. A., Cheesman, A., Ma, J. & Ashfold, M. N. R. Understanding the chemical vapor deposition of diamond: recent progress. J. Phys. Condens. Matter 21, 364201 (2009).

    Article CAS PubMed Google Scholar

  • Yamasaki, S., Pobedinskas, P. & Nicley, S. S. Recent advances in diamond science and technology. Phys. Status Solidi A 214, 1770167 (2017).

    Article Google Scholar

  • Yarbrough, W. A. & Messier, R. J. S. Current issues and problems in the chemical vapor deposition of diamond. Science 247, 688–696 (1990).

    Article ADS CAS PubMed Google Scholar

  • Butler, J. E. & Windischmann, H. Developments in CVD-diamond synthesis during the past decade. MRS Bull. 23, 22–27 (1998).

    Article CAS Google Scholar

  • Schwander, M. & Partes, K. J. D. A review of diamond synthesis by CVD processes. Diam. Relat. Mater. 20, 1287–1301 (2011).

    Article ADS CAS Google Scholar

  • Linde, O., Geyler, O. & Epstein, A. The Global Diamond Industry 2018: A Resilient Industry Shines Through (Bain, 2018).

  • Dossa, S. S. et al. Analysis of the high-pressure high-temperature (HPHT) growth of single crystal diamond. J. Cryst. Growth 609, 127150 (2023).

    Article CAS Google Scholar

  • Ferro, S. Synthesis of diamond. J. Mater. Chem. 12, 2843–2855 (2002).

    Article CAS Google Scholar

  • Eaton-Magaña, S., Shigley, J. E. & Breeding, C. M. Observations on HPHT-grown synthetic diamonds: a review. Gems Gemol. 53, 262–284 (2017).

    Article Google Scholar

  • Sumiya, H., Harano, K. & Tamasaku, K. HPHT synthesis and crystalline quality of large high-quality (001) and (111) diamond crystals. Diam. Relat. Mater. 58, 221–225 (2015).

    Article ADS CAS Google Scholar

  • Kalantar-Zadeh, K. et al. Emergence of liquid metals in nanotechnology. ACS Nano 13, 7388–7395 (2019).

    Article CAS PubMed Google Scholar

  • Taccardi, N. et al. Gallium-rich Pd–Ga phases as supported liquid metal catalysts. Nat. Chem. 9, 862–867 (2017).

    Article CAS PubMed Google Scholar

  • Daeneke, T. et al. Liquid metals: fundamentals and applications in chemistry. Chem. Soc. Rev. 47, 4073–4111 (2018).

    Article CAS PubMed Google Scholar

  • Camacho-Mojica, D. C. et al. Charge transfer during the dissociation of H2 and the charge state of H atoms in liquid gallium. J. Phys. Chem. C 123, 26769–26776 (2019).

    Article CAS Google Scholar

  • Ueki, R. et al. In-situ observation of surface graphitization of gallium droplet and concentration of carbon in liquid gallium. Jpn. J. Appl. Phys. 51, 06FD28 (2012).

    Article Google Scholar

  • Fujita, J.-I. et al. Near room temperature chemical vapor deposition of graphene with diluted methane and molten gallium catalyst. Sci. Rep. 7, 12371 (2017).

    Article ADS PubMed PubMed Central Google Scholar

  • Upham, D. C. et al. Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon. Science 358, 917–921 (2017).

    Article ADS MathSciNet CAS PubMed Google Scholar

  • Allioux, F.-M. et al. Carbonization of low thermal stability polymers at the interface of liquid metals. Carbon 171, 938–945 (2021).

    Article CAS Google Scholar

  • Kawasaki, H. et al. A liquid metal catalyst for the conversion of ethanol into graphitic carbon layers under an ultrasonic cavitation field. Chem. Commun. 58, 7741–7744 (2022).

    Article CAS Google Scholar

  • Zuraiqi, K. et al. Direct conversion of CO2 to solid carbon by Ga-based liquid metals. Energy Environ. Sci. 15, 595–600 (2022).

    Article CAS Google Scholar

  • Li, P. C. Preparation of single-crystal graphite from melts. Nature 192, 864–865 (1961).

    Article ADS CAS Google Scholar

  • Tulloch, H. J. C. & Young, D. A. Synthetic single crystals of graphite. Nature 211, 730–731 (1966).

    Article ADS Google Scholar

  • Sumiyoshi, Y., Ushio, M. & Suzuki, S. Formation of graphite single crystal from iron solution by the slow cooling method. Bull. Chem. Soc. Jpn. 61, 1577–1585 (1988).

    Article CAS Google Scholar

  • Noda, T., Sumiyoshi, Y. & Ito, N. Growth of single crystals of graphite from a carbon-iron melt. Carbon 6, 813–816 (1968).

    Article CAS Google Scholar

  • Austerman, S. B., Myron, S. M. & Wagner, J. W. Growth and characterization of graphite single crystals. Carbon 5, 549–557 (1967).

    Article CAS Google Scholar

  • Merel, P., Tabbal, M., Chaker, M., Moisa, S. & Margot, J. Direct evaluation of the sp3 content in diamond-like-carbon films by XPS. Appl. Surf. Sci. 136, 105–110 (1998).

    Article ADS CAS Google Scholar

  • Chu, C., d’Evelyn, M., Hauge, R. & Margrave, J. Mechanism of diamond growth by chemical vapor deposition on diamond (100), (111), and (110) surfaces: carbon-13 studies. J. Appl. Phys. 70, 1695–1705 (1991).

    Article ADS CAS Google Scholar

  • Cai, W. et al. Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide. Science 321, 1815–1817 (2008).

    Article ADS CAS PubMed Google Scholar

  • Yang, B. et al. Fabrication of silicon-vacancy color centers in diamond films: tetramethylsilane as a new dopant source. CrystEngComm 20, 1158–1167 (2018).

    Article CAS Google Scholar

  • Feng, Z., Lin, Y., Tian, C., Hu, H. & Su, D. Combined study of the ground and excited states in the transformation of nanodiamonds into carbon onions by electron energy-loss spectroscopy. Sci. Rep. 9, 3784 (2019).

    Article ADS PubMed PubMed Central Google Scholar

  • Luo, K. et al. Coherent interfaces govern direct transformation from graphite to diamond. Nature 607, 486–491 (2022).

    Article ADS CAS PubMed PubMed Central Google Scholar

  • Tulić, S. et al. Covalent diamond–graphite bonding: mechanism of catalytic transformation. ACS Nano 13, 4621–4630 (2019).

    Article PubMed PubMed Central Google Scholar

  • Wi, T.-G., Park, Y.-J., Lee, U. & Kang, Y.-B. Methane pyrolysis rate measurement using electromagnetic levitation techniques for turquoise hydrogen production: liquid In, Ga, Bi, Sn, and Cu as catalysts. Chem. Eng. J. 460, 141558 (2023).

    Article CAS Google Scholar

  • Gong, Y. et al. hom*oepitaxial diamond grown in a liquid metal solvent. ChemRxiv. Preprint at https://doi.org/10.26434/chemrxiv-2022-q8ppf (2022).

  • Ohtsuka, Y. et al. Theoretical study on the C–H activation of methane by liquid metal indium: catalytic activity of small indium clusters. J. Phys. Chem. A 123, 8907–8912 (2019).

    Article CAS PubMed Google Scholar

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article ADS CAS Google Scholar

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Perdew, Burke, and Ernzerhof reply. Phys. Rev. Lett. 80, 891 (1998).

    Article ADS CAS Google Scholar

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article ADS CAS PubMed Google Scholar

  • Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article ADS PubMed Google Scholar

  • Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984).

    Article ADS Google Scholar

  • Nose, S. Constant-temperature molecular dynamics. J. Phys. Condens. Matter 2, SA115 (1990).

    Article ADS Google Scholar

  • Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).

    Article ADS CAS Google Scholar

  • Frenkel, D. & Smit, B. Understanding Molecular Simulation: From Algorithms to Applications (Academic Press, 1996).

  • Sharma, B. D. & Donohue, J. A refinement of the crystal structure of gallium. Z. Kristallogr. Cryst. Mater. 117, 293–300 (1962).

    Article CAS Google Scholar

  • Assael, M. J. et al. Reference data for the density and viscosity of liquid cadmium, cobalt, gallium, indium, mercury, silicon, thallium, and zinc. J. Phys. Chem. Ref. Data 41, 033101 (2012).

    Article ADS Google Scholar

  • Cohen, J. Statistical Power Analysis for the Behavioral Sciences (Academic Press, 2013).

  • Yan, G., Da, L. & Rodney, R. Source data for “Growth of diamond in liquid metal at 1 atmosphere pressure”. Zenodo https://doi.org/10.5281/zenodo.10803625 (2024).

  • Growth of diamond in liquid metal at 1 atm pressure (2024)
    Top Articles
    Latest Posts
    Article information

    Author: Nicola Considine CPA

    Last Updated:

    Views: 5436

    Rating: 4.9 / 5 (49 voted)

    Reviews: 80% of readers found this page helpful

    Author information

    Name: Nicola Considine CPA

    Birthday: 1993-02-26

    Address: 3809 Clinton Inlet, East Aleisha, UT 46318-2392

    Phone: +2681424145499

    Job: Government Technician

    Hobby: Calligraphy, Lego building, Worldbuilding, Shooting, Bird watching, Shopping, Cooking

    Introduction: My name is Nicola Considine CPA, I am a determined, witty, powerful, brainy, open, smiling, proud person who loves writing and wants to share my knowledge and understanding with you.